A componentwise version of Terao’s conjecture

نویسنده

  • William N. Traves
چکیده

We show that the free hyperplane arrangements form a Zariski-closed set in various parameter spaces. Given a geometric lattice L let V(L) be the parameter space of arrangements with intersection lattice isomorphic to L. Coupling our result with a theorem of Yuzvinsky, we conclude that in V(L) the free arrangements are parameterized by a union of connected components of V(L).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The maximum likelihood degree of a very affine variety

We show that the maximum likelihood degree of a smooth very affine variety is equal to the signed topological Euler characteristic. This generalizes Orlik and Terao’s solution to Varchenko’s conjecture on complements of hyperplane arrangements to smooth very affine varieties. For very affine varieties satisfying a genericity condition at infinity, the result is further strengthened to relate th...

متن کامل

Some Families of Componentwise Linear Monomial Ideals

Let R = k[x1, . . . , xn] be a polynomial ring over a field k. Let J = {j1, . . . , jt} be a subset of {1, . . . , n}, and let mJ ⊂ R denote the ideal (xj1 , . . . , xjt). Given subsets J1, . . . , Js of {1, . . . , n} and positive integers a1, . . . , as, we study ideals of the form I = m1 J1 ∩ · · · ∩ m as Js . These ideals arise naturally, for example, in the study of fat points, tetrahedral...

متن کامل

$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures

Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...

متن کامل

Elementary Modifications and Line Configurations in P

Associated to a projective arrangement of hyperplanes A ⊆ Pn is the module D(A), which consists of derivations tangent to A. We study D(A) when A is a configuration of lines in P. In this setting, we relate the deletion/restriction construction used in the study of hyperplane arrangements to elementary modifications of bundles. This allows us to obtain bounds on the Castelnuovo-Mumford regulari...

متن کامل

Cones Related to the Lefschetz Properties

In [17] the authors highlight the link between rational varieties satisfying a Laplace equation and artinian ideals that fail the Weak Lefschetz property. Continuing their work we extend this link to the more general situation of artinian ideals failing the Strong Lefschetz Property. We characterize the failure of SLP (that includes WLP) by the existence of special singular hypersurfaces (cones...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009